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Abstract

Current Reinforcement Learning algorithms cannot efficiently transfer between
related tasks within the same environment. The successor feature framework aims
to solve this by decomposing the policy into two components: one learning the
discounted future expected state feature, called the successor features, of each state
feature and one modelling the environment reward structure. In this paper, we make
the connection that the successor feature component learned by the agent is an
amortized latent state-transition model that conditions on the agent’s policy. Instead
of learning this coupled function, we show that it is possible to use a state-transition
model to compute the successor features dynamically. This decoupling lets us
leverage methods from unsupervised and semi-supervised learning to learn the state-
transition model. We believe the state-transition model’s resulting features will be
more generic to the particular policy, possibly helping task transfer. Furthermore,
now that the features are decoupled from the policy, we gain immense freedom
in learning the reward structure. We plan to evaluate this change in a continuous
gridworld environment and robotic reacher, both with several tasks and reward
structures.

1 Introduction

Reinforcement learning’s (RL) performance has seen leaps and bounds in improvement over the
past few years, outperforming human experts on tasks such as Go [1], Poker [2], Atari [3], and chip
placement [4]. Deep neural networks, a powerful class of function approximators [5], have primarily
fueled by being coupled with RL algorithms producing deep RL algorithms.

However, RL algorithms still lack the ability to transfer their learned policy between related tasks;
an ability that deep neural network based image recognition models possess to some extent [6]. RL
algorithms often require full retraining on the policy to achieve good performance on a related task.
The ability to transfer between tasks improves sample efficiency as the model can reuse previously
learned knowledge.

The successor feature (SF) framework [7][8][9] improves transfer between tasks by decomposing the
policy into two separate components: one capturing future expected environment dynamics under a
given policy, the successor features, and another modelling the task reward. The state-action value is
computed as the dot product between the SFs, one per action, and the reward component. During
transfer, the successor features are held frozen, and only the reward component’s parameters are
trained, which require fewer samples by virtue of being small.

Mathematically, we show that the SFs can be dynamically computed using a latent state-transition
model given the reward component for a specific task. Solving the RL problem now requires only
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learning a state-transition and a small vector that parameterizes the reward component. By decoupling
the policy from the SFs, we gain flexibility in the methods we can use to learn our model, allowing
us to borrow from the unsupervised and semi-supervised learning literature – with potential for
a significant increase in model quality. As a result of more expressive models, we believe that
the learned state features will be more general, leading to better transfer across tasks in the same
environment than the standard SF framework.

The proposed approach can be easily related to model-based reinforcement learning, which has the
goal of learning the world dynamics for enhanced sample efficiency [10][11][12]. Furthermore,
model-based RL also has the advantage of being able to leverage offline data or expert demonstrations
during learning [13][14]; further increasing sample efficiency. However, possible drawbacks can exist
with model-based methods as errors in the latent state representation quality can cause accumulation
of errors during the rollout. Models of the environment also add the ability to perform guided
exploration using state reconstruction quality as a proxy to novelty and state visitation probabilities
[15]. Therefore, we believe state-transition models will expand what was previously possible within
the Successor Feature framework.

The contributions we wish to make in this paper are as follows:

• Provide evidence that a state-transition model can dynamically produce successor features
that are equivalent in quality to the amortized version.

• Show that dynamic successor features provide many benefits, such as increased generality.
• Demonstrate it is possible to leverage the unsupervised and semi-supervised learning litera-

ture to strengthen the learned state-transition model.

We organize our paper as follows: Section 2 provides an overview of background material, Section
3 describes the proposed changes to the successor framework and how it is training, and Section 4
discusses the experiments we hope to perform to validate our changes.

2 Background

In this section, we formally define the RL problem, then provide a derivation of the Successor
Features, and finally introduce our modification to the SF framework.

We assume an agent interacts with an environment according to a Markov Decision Process (MDP)
[16]. At each timestep t the agent observes a state st ∈ S , where S are the set of all available states.
From state st, the agent selects an action at from the set of all available actions A and executes it in
the environment. The environment transitions to a new state st+1 and emits a reward rt+1 according
to the environment transition dynamics P (st+1, rt+1|st, at). In this paper, we focus on tasks and
environments where only the rewards are statistically independent of the previous state, being entirely
defined by the resulting state only, thus focusing on P (st+1, rt+1). Ma et al.[9] show several tasks
where this holds true. The objective of the agent is to find a policy π : S 7→ A which maximizes the
expected value of the discounted sum of rewards in the environment Gt, defined as:

Gt =

∞∑
k=0

γkrt+k

where γ ∈ [0, 1] is the discount factor that trades off the importance of immediate and future rewards.
A policy π can be derived from the state-action value function, the Q-Learning function, which is
defined as:

Qπ(s, a) = Eπ [Gt|st = s, at = a] , (1)

which provides the future expected reward of selecting any action a ∈ A and then following the
policy π afterwards; such that π(s) ∈ argmaxaQ

π(s, a).

The Successor Feature framework decomposes the Q-Learning function into two components. The
decomposition is accomplished by first assuming that the reward rt is computed as the dot product
between state features φt ∈ Rz , extracted from st using an encoder E : S → Φ, and a vector w ∈ Rz .
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Where z is a hyperparameter that controls the embedding dimension of the vectors. The vector w
models the reward of the environment, and in this work, we assume, once decoupled, that it can
induce policy π through ψ(s, a).

Therefore, following from the assumption that rt = φ>t · w and the definition of the Q-Learning
function in Equation 1, we can see the following derivation:

Qπ(s, a) = Eπ
[
rt + γrt+1 + γ2rt+2 + . . . |st = s, at = a

]
(2a)

= Eπ
[
φ>t · w + γφ>t+1 · w + . . . |st = s, at = a

]
(2b)

= ψπ(s, a)> · w, (2c)

where the vector ψπ(s, a) ∈ Rz is referred to as the successor features under policy π, with one vector
defined per action. The i-th component of ψπ(s, a)(i) predicts the future expected discounted sum of
the feature φ(i)t that the policy π visits. As mentioned above, because we are focusing our research
on tasks where the reward rt is a function of only the current state st and not the state-transition:
S × A −→ S ′. Therefore, the proposed method follows the reward formulation proposed by [9].
Likewise, the proposed method assumes that the extracted features φt are a function of the state st
only and do not rely on the transition tuple.

Under this decomposition, transfer between new tasks requires retraining of just the smaller reward
vector w. While keeping the state features φ and successor features ψπ frozen, reusing previously
learned knowledge. Unfortunately, the successor features learn an amortized function for a specific
policy π. We believe that the successor features ψπ and encoder producing φ are less general as a
result – possibly hurting transfer between related tasks.

3 Policy Agnostic Successor Features

We believe that by decoupling the successor features from the policy, we will gain a myriad of
benefits, such as more robust generalization capabilities to both related tasks and policies. More
exactly, we propose learning a latent state-transition model that can dynamically bootstrap successor
features irrespective of the policy given. Within this work, we make the assumption that φt, and
therefore the reward rt, are predicted solely from the current state st. We begin by revisiting the
definition of the successor features ψ:

ψπ(s, a) = Eπ[φt + γφt+1 + γ2φt+2 + . . . ] (3)

where we observe that the visited latent states within the expectation depends on the particular policy
π and that Equation 3 can therefore be rewritten in terms of a chain of state-transitions dictated
by said policy. Defining Equation 3 in terms of state transitions requires access to a model of the
environment that can predict the next latent state φt+1 given the current latent state φt and an action
a. In this work we refer to this modelM as the latent-state transition model and define it as:

M : (φt ∈ Φ)× (at ∈ A) 7→ (φt+1 ∈ Φ) (4)

where Φ is the set of all encoded valid states S. Following from this definition, Equation 3 can now
be rewritten with the latent state-transition modelM as follows:

ψ(s, a, π, γ) = φt + γM(φt, a) + . . . (5)

where ψ is now accepts additional arguments such as the policy π and discount factor γ. Rewriting
Equation 5 with a summation and k length rollout:

ψ(s, a, π, γ) = φt + γM(φt, a) +

k−1∑
j=1

γj+1M(φ̂t+j , π(φ̂t+j)) (6)

where we define φ̂t+i+1 =M(φ̂t+j , π(φ̂t+j)) and φ̂t+1 =M(φt, a). Equation 6 implies that we
can compute the successor features dynamically given a latent state-transition model, a discount
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factor γ, and a policy π induced by w with a previous estimate of ψ from the last rollout step. The
policy π is bootstrapped before each step in the environment by gradually unrolling the latent space
withM to construct ψ, as shown in Equation 6. Comparing Equation 3 & 6, we can see that the
original function formulation of ψ is learning an amortized version of this rollout under a specific
policy and discount factor.

The final Q-Learning function in Equation 2, can now be dynamically inferred based on the specific
policy and discount factor by unrollingM for k steps:

Q(s, a, π, γ) =
{
φt + γM(φt, a) +

k−1∑
j=1

γj+1M(φ̂t+j , π(φ̂t+j))
}> · w (7)

Again, we note that this contrasts with the traditional phrasing of the SF framework, where the
successor features learn an amortized inference of the Q-function in (2c), which we believe couples
the learned features and policy together – limiting flexibility. Further, we see that RL can now be
accomplished without explicitly using temporal difference learning.

3.1 Training

We expect to train the proposed model under the same training regime as used in previous works in
the successor feature framework. That is, we will train our model following the Deep Q-Learning
methodology [3]. Our experiments will have a single ε-greedy policy interacting with an environment
and updating the models with transitions sampled from a replay memory at fixed intervals. We intend
to have at least three broadly defined components in our architecture: a reward component, a state
encoder E that produces the latent state φt from the raw state space st, and state-transition modelM.

The reward component will simply be the vector w ∈ Rz which we train to minimize the following
loss:

Lr = (rt − φ>t · w)2 (8)

At this time, there is uncertainty in what is the best way to train and structure the state encoder E
and state-transition modelM which we hope to resolve through experimentation. The state encoder
E needs to produce a suitable representation of the state which is useful for downstream tasks.
However, we can say with certainty that the state encoder will either be a fully connected network or
a convolutional network depending on the task. The state-transition model structure will have much
greater variability in its structure. We will evaluate different models such as those using a purely feed
forward network [15], a residual network [17, 18], recurrent networks [15, 19, 20], or even generative
models [21].

Auxiliary tasks are often included when learning the encoder E , as done several related works within
the SF framework, such as a encode-decode task [8, 9, 22]. This task pairs the encoder model E
with a decoder D : (φt ∈ Φ)→ (st ∈ S) which takes the latent representation φt produced by the
encoder and predicts the current state st. The encode-decode task learns to minimize the following
loss:

Led = (st −D(φt))
2 (9)

where φt = E(st). As learning a well formed latent representation φ is important we might consider
investigating other auxiliary tasks such as contrastive learning [23, 24, 25] in our experiments. The
state-transition model M will be trained to predict the next latent state φt+1, and is trained to
minimize the loss:

LM = (φt+1 −M(φt, at))
2 (10)

where φt = E(st), φt+1 = E(st+1), and at is the action taken at time t. Gradients will be back-
propagated through φt but not the target variable φt+1. We also plan to investigate additional auxiliary
tasks that can be used to train a stronger state-transition modelM, such as predicting the reward rt+1

from the predicted state φt+1.

The manner in which the losses are combined and trained is also an area we will need to verify
experimentally. Typically in the SF framework, the loss used to train successor features ψ are trained
in alternating steps from the reward and encode-decode losses. This is primarily done to improve
stability of the induced policy during learning and environment interactions. As our proposed method
decouples the policy from the successor features and no longer relies on learning an amortized
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approximation of the ψ quantity we believe it might be possible to train all our components together
end-to-end at once.

Therefore, during the model update step we tentatively plan to minimize the following loss:
L = Lr + Led + LM (11)

Additionally, as our model now learns in an unsupervised/semi-supervised manner, from randomly
sampled batches of data, it might be possible use the DQN methodology without having a frozen set
of weights to stabilize learning.

4 Proposed Experiments

This section discusses the experiments we wish to use to evaluate our dynamic successor feature
model. We identify roughly three areas that our experiments must cover: equivalency, benefits, and
ablations. Our first goal is to prove that our method is equivalent to the original formulation with
the amortized function. However, multiple axes must be considered, such as overall performance,
training time, sample efficiency, and ability to transfer.

The second area we will examine is what benefits this formulation provides. We wish to examine and
understand the state features learned by the model, if greater performance can be achieved by using
cutting edge supervised learning methods such as contrastive learning, and if our method leads to
greater generalization between tasks.

The final area of experimentation will focus on the ablations of this methodology. This area will
focus on understanding what effects our model’s hyperparameters have on its performance and if we
can gain insight into its performance.

4.1 Environments

Below we provide a general description of environments where we will conduct the investigations
discussed above. A consideration in the selection of the environments was made such that the reward
rt can be predicted from the current state st.

Axes: This environment will feature an agent traversing around a 2d type gridworld where it must
reach a goal location specified by a marker. Different tasks are described by varied goal locations
where we will split tasks between the train and test sets. The raw state space will include the distance
between the agent and every goal available. Therefore, the optimal reward vector for a particular
task would be a 1-hot encoding. Two termination conditions will exist in this environment, either the
agent reaches the marked goal or goes over a max number of steps. The agent will be able to traverse
left, up, right, and down. The reward will be the negative distance between the agent and the reward.
In this environment, the state and reward are continuous. Additionally, as this environment is quite
simple, we should have a ground-truth state-transition model available for experimentation. We will
compare both hard coded and learned state features in this environment.

Reacher: This environment is the reacher task from the Deepmind Control suite [26] based on
the MuJuco software package [27]. In this environment, the agent must control a two-joint torque-
controlled robotic arm to a specific goal location. We will define separate train and test tasks as [22].
The reward will be defined as the distance between the robotic arm’s head and the current goal in the
environment. We define two termination conditions: if the arm’s end is within a fixed distance of the
goal or if the agent has used too many steps in the environment. The state features are learned in this
experiment.

4.2 Experimental Details

We will compare our proposed model to the traditional successor feature framework as a baseline
model in all experiments. Both versions will follow a similar training procedure, where we train the
models as described by the Q-Learning method in Barreto et al.[22]. Each experiment will have at
least five runs with varied seeds and report the average performance with confidence intervals on all
experiments.

We will aim to restrict the number of parameters in our new model such that they are roughly
equivalent to the previous formulation.
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4.3 Equivalency

We wish to prove that the dynamic successor features are equivalent to the amortized version in this
set of experiments and done in varying stages.

We begin by seeing if, given a ground-truth state-transition model and hand-designed reward vector
w, the resulting policy is optimal. The next experiment to evaluate is if we can, again given a ground-
truth state-transition model, learn the optimal w and, therefore, optimal policy from environment
interactions. The final experiments will compare learning both the state-transition model and reward
vector w from environment interactions.

Throughout each of these stages of experiments, we will compare each learned component to that
of one found in the SF framework’s original formulation. Specifically, we will compare the mean
absolute percent error between the ground-truth state-transition model and both the dynamic and
amortized versions. This will provide information on how strong the compounding rollout error is
and if it is small enough to find good policies. We will also examine how well the agent can predict
reward throughout the state space from the learned feature vectors φ.

To accomplish the aforementioned experiments, we will primarily use the gridworld environment to
access a ground-truth state-transition model. Another benefit of the gridworld environment is that it
is simple enough to easily visualize the state space in conjunction with another value, such as the
reward error.

4.4 Benefits

If the dynamic and amortized versions are equivalent, we then move to examine the benefits of our
proposed model. In particular, we are interested in understanding if our proposed variant:

• Does it allow quicker task transfer due to the more general state features?
• CanM and γ be used guide exploration in the SF framework?
• How well exotic modelling techniques work for the latent state-transition model? (recurrent

networks, contrastive approaches, etc.)
• Instead of using a fixed discount factor γ can we use either a dynamic or annealed version?

4.5 Ablations

This area will mostly be carried out in the gridworld environment as we will require access to a
ground-truth state-transition model. We are most interested in understanding the following questions
with regards to our propose model:

• What value of k for our rollout length, in Equation 6, works best? Is k = 1 enough?
• How does the size of the encoder and state-transition model impact performance? General-

ization?
• ShouldM be trained to optimize Lr in Equation (8) and help w differentiate reward states

or just minimizing Lφ is enough?
• Can we train all components together at once?
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